Short note on Fact Constellations Schema.

 Fact Constellations Schema

  • This kind of schema can be viewed as a collection of stars, and hence is called a galaxy schema or a fact constellation.
  •  A fact constellation schema allows dimension tables to be shared between fact tables. 
  • For example, the following schema specifies two fact tables, sales, and shipping. 
- The sales table definition is identical to that of the star schema. 
- The shipping table has five dimensions or keys: item key, time key, shipper key, from location, and to location, and two measures: dollars cost and units shipped.








Defining a Fact Constellation in DMQL
define cube sales [time, item, branch, location]:

dollars_sold = sum(sales_in_dollars), avg_sales = avg(sales_in_dollars), units_sold = count(*)

define dimension time as (time_key, day, day_of_week, month, quarter, year)
define dimension item as (item_key, item_name, brand, type, supplier_type)
define dimension branch as (branch_key, branch_name, branch_type)
define dimension location as (location_key, street, city, province_or_state, country)
define cube shipping [time, item, shipper, from_location, to_location]:
dollar_cost = sum(cost_in_dollars), unit_shipped = count(*)
define dimension time as time in cube sales
define dimension item as item in cube sales
define dimension shipper as (shipper_key, shipper_name, location as location in cube sales, shipper_type)
define dimension from_location as location in cube sales
define dimension to_location as location in cube sales

OR,







Comments

Popular posts from this blog

Suppose that a data warehouse for Big-University consists of the following four dimensions: student, course, semester, and instructor, and two measures count and avg_grade. When at the lowest conceptual level (e.g., for a given student, course, semester, and instructor combination), the avg_grade measure stores the actual course grade of the student. At higher conceptual levels, avg_grade stores the average grade for the given combination. a) Draw a snowflake schema diagram for the data warehouse. b) Starting with the base cuboid [student, course, semester, instructor], what specific OLAP operations (e.g., roll-up from semester to year) should one perform in order to list the average grade of CS courses for each BigUniversity student. c) If each dimension has five levels (including all), such as “student < major < status < university < all”, how many cuboids will this cube contain (including the base and apex cuboids)?

Explain Parallel Efficiency of MapReduce.

Suppose that a data warehouse consists of the four dimensions; date, spectator, location, and game, and the two measures, count and charge, where charge is the fee that a spectator pays when watching a game on a given date. Spectators may be students, adults, or seniors, with each category having its own charge rate. a) Draw a star schema diagram for the data b) Starting with the base cuboid [date; spectator; location; game], what specific OLAP operations should perform in order to list the total charge paid by student spectators at GM Place in 2004?